
EC3401 NETWORKS AND SECURITY

UNIT III TRANSPORT AND APPLICATION LAYERS

Transport Layer Protocols – UDP and TCP Connection and State Transition Diagram - Congestion

Control and Avoidance (DEC bit, RED)- QoS - Application Layer Paradigms – Client – Server

Programming – Domain Name System – World Wide Web, HTTP, Electronic Mail.

The transport layer is located between the application layer and the network layer. It provides a

process-to-process communication between two application layers, one at the local host and the other

at the remote host.

A transport-layer protocol, like a network-layer protocol, can provide two types of services:

connectionless and connection-oriented

Connectionless Service:

 In a connectionless service, the source process (application program) needs to divide its
message into chunks of data of the size acceptable by the transport layer and deliver them to
the transport layer one by one.

 The transport layer treats each chunk as a single unit without any relation between the chunks.

 When a chunk arrives from the application layer, the transport layer encapsulates it in a packet

and sends it.

 Since there is no dependency between the packets at the transport layer, the packets may arrive

out of order at the destination and will be delivered out of order to the server process

 The situation would be worse if one of the packets were lost. Since there is no numbering on the

packets, the receiving transport layer has no idea that one of the messages has been lost. It just

delivers two chunks of data to the server process.

Connection-Oriented Service:

 In a connection-oriented service, the client and the server first need to establish a logical

connection between them. The data exchange can only happen after the connection

establishment. After data exchange, the connection needs to be torn down.

USER DATAGRAM PROTOCOL

 The User Datagram Protocol (UDP) is a connectionless, unreliable transport protocol.

Downloaded from www.eduengineering.net

 It does not add anything to the services of IP except for providing process-to-process

communication instead of host-to-host communication.

 UDP is a very simple protocol using a minimum of overhead.

 If a process wants to send a small message and does not care much about reliability, it can use

UDP. Sending a small message using UDP takes much less interaction between the sender and

receiver

User Datagram

 UDP packets, called user datagrams, have a fixed-size header of 8 bytes made of four fields,

each of 2 bytes (16 bits).

 The first two fields define the source and destination port numbers.

 The third field defines the total length of the user datagram, header plus data.

 The 16 bits can define a total length of 0 to 65,535 bytes. However, the total length needs to be

less because a UDP user datagram is stored in an IP datagram with the total length of 65,535

bytes

 The last field can carry the optional checksum

Example:

The following is the content of a UDP header in hexadecimal format. CB84000D001C001C

a. What is the source port number?

b. What is the destination port number?

c. What is the total length of the user datagram?

d. What is the length of the data?

Solution

a. The source port number is the first four hexadecimal digits (CB84)16, which means

that the source port number is 52100.

 b. The destination port number is the second four hexadecimal digits (000D)16, which

means that the destination port number is 13.

c. The third four hexadecimal digits (001C)16 define the length of the whole UDP packet

as 28 bytes.

 d. The length of the data is the length of the whole packet minus the length of the

header, or 28 − 8 = 20 bytes.

UDP Services:

Process-to-Process Communication:

 UDP provides process-to-process communication using socket addresses, a combination of IP

 addresses and port numbers

Downloaded from www.eduengineering.net

Connectionless Services

 UDP provides a connectionless service.

 There is no relationship between the different user datagrams even if they are coming

from the same source process and going to the same destination program.

 The user datagrams are not numbered

Flow Control

 UDP is a very simple protocol. There is no flow control, and hence no window

mechanism. The receiver may overflow with incoming messages.

Error Control

 There is no error control mechanism in UDP except for the checksum.

 The sender does not know if a message has been lost or duplicated.

 When the receiver detects an error through the checksum, the user datagram is silently

discarded.

Checksum

 UDP checksum calculation includes three sections: a pseudoheader, the UDP header,

and the data coming from the application layer.

 The pseudoheader is the part of the header of the IP packet in which the user datagram

is to be encapsulated with some fields filled with 0s

 If the checksum does not include the pseudo header, a user datagram may arrive safe

and sound. However, if the IP header is corrupted, it may be delivered to the wrong

host.

 If the checksum does not include the pseudo header, a user datagram may arrive safe

and sound. However, if the IP header is corrupted, it may be delivered to the wrong

host.

Applications of UDP:

 UDP is suitable for a process that requires simple request-response communication with

little concern for flow and error control.

 UDP is a suitable transport protocol for multicasting.

 UDP is used for management processes such as SNMP

 UDP is used for some route updating protocols such as Routing Information Protocol

(RIP)

Downloaded from www.eduengineering.net

 UDP is normally used for interactive real-time applications that cannot tolerate uneven

delay between sections of a received message

TRANSMISSION CONTROL PROTOCOL:

Transmission Control Protocol (TCP) is a connection-oriented, reliable protocol. TCP explicitly

defines connection establishment, data transfer, and connection teardown phases to provide a

connection-oriented service.

TCP Services:

Process-to-Process Communication: As with UDP, TCP provides process-to-process communication

using port numbers.

Stream Delivery Service:

 TCP allows the sending process to deliver data as a stream of bytes and allows the receiving

process to obtain data as a stream of bytes. TCP creates an environment in which the two

processes seem to be connected by an imaginary “tube” that carries their bytes across the

Internet

Sending and Receiving Buffers:

 Because the sending and the receiving processes may not necessarily write or read data at the

same rate, TCP needs buffers for storage. There are two buffers, the sending buffer and the

receiving buffer, one for each direction

 At the sender, the buffer has three types of chambers. The white section contains empty

chambers that can be filled by the sending process (producer). The colored area holds bytes that

have been sent but not yet acknowledged. The TCP sender keeps these bytes in the buffer until

it receives an acknowledgment

 TCP may be able to send only part of this shaded section. This could be due to the slowness of

the receiving process or to congestion in the network

 The operation of the buffer at the receiver is simpler. The circular buffer is divided into two

areas. The white area contains empty chambers to be filled by bytes received from the network.

The colored sections contain received bytes that can be read by the receiving process.

Segments:

 At the transport layer, TCP groups a number of bytes together into a packet called a segment

Downloaded from www.eduengineering.net

 TCP adds a header to each segment and delivers the segment to the network layer for

transmission

 The segments are encapsulated in an IP datagram and transmitted. This entire operation is

transparent to the receiving process.

Full-Duplex Communication: TCP offers full-duplex service, where data can flow in both directions

at the same time

Multiplexing and Demultiplexing: TCP performs multiplexing at the sender and demultiplexing at

the receiver

Connection-Oriented Service TCP: When a process at site A wants to send to and receive data from

another process at site B, the following three phases occur:

1. The two TCP’s establish a logical connection between them.

2. Data are exchanged in both directions.

3. The connection is terminated.

Numbering System: Although the TCP software keeps track of the segments being transmitted or

received, there is no field for a segment number value in the segment header. Instead, there are

two fields, called the sequence number and the acknowledgment number. These two fields refer to

a byte number and not a segment number.

Byte Number: TCP numbers all data bytes that are transmitted in a connection. Numbering is

independent in each direction. When TCP receives bytes of data from a process, TCP stores them in

the sending buffer and numbers them. The numbering does not necessarily start from 0. Instead,

TCP chooses an arbitrary number between 0 and 232 − 1 for the number of the first byte.

Sequence Number: After the bytes have been numbered, TCP assigns a sequence number to each

segment that is being sent. The sequence number, in each direction, is defined as follows:

1. The sequence number of the first segment is the ISN (initial sequence number), which is a random

number.

 2. The sequence number of any other segment is the sequence number of the previous segment

plus the number of bytes (real or imaginary) carried by the previous segment.

TCP Segment Format:

 A packet in TCP is called a segment. The segment consists of a header of 20 to 60 bytes,
followed by data from the application program. The header is 20 bytes if there are no
options and up to 60 bytes if it contains options.

Source port address. This is a 16-bit field that defines the port number of the application
program in the host that is sending the segment.
Destination port address. This is a 16-bit field that defines the port number of the application
program in the host that is receiving the segment.

Downloaded from www.eduengineering.net

Sequence number. This 32-bit field defines the number assigned to the first byte of data
contained in this segment. The sequence number tells the destination which byte in this
sequence is the first byte in the segment.
Acknowledgment number. This 32-bit field defines the byte number that the receiver of the
segment is expecting to receive from the other party. If the receiver of the segment has
successfully received byte number x from the other party, it returns x + 1 as the
acknowledgment number. Acknowledgment and data can be piggybacked together.
Header length. This 4-bit field indicates the number of 4-byte words in the TCP header. The
length of the header can be between 20 and 60 bytes. Therefore, the value of this field is always
between 5 (5 × 4 = 20) and 15 (15 × 4 = 60).

Control. This field defines 6 different control bits or flags. These bits enable flow control,
connection establishment and termination, connection abortion, and the mode of data
transfer in TCP.

Window size. This field defines the window size of the sending TCP in bytes. The length of
this field is 16 bits, which means that the maximum size of the window is 65,535 bytes
Checksum. This 16-bit field contains the checksum
Urgent pointer. This 16-bit field, which is valid only if the urgent flag is set, is used when the
segment contains urgent data
TCP Connection:
TCP is connection-oriented. A connection-oriented transport protocol establishes a logical
path between the source and destination. All of the segments belonging to a message are
then sent over this logical path.
Using a single logical pathway for the entire message facilitates the acknowledgment
process as well as retransmission of damaged or lost frames
In TCP, connection-oriented transmission requires three phases: connection establishment,
data transfer, and connection termination
Connection Establishment:

 TCP transmits data in full-duplex mode.

 When two TCPs in two machines are connected, they are able to send segments to
each other simultaneously.

Downloaded from www.eduengineering.net

 This implies that each party must initialize communication and get approval from
the other party before any data are transferred.

Three-Way Handshaking:

 The connection establishment in TCP is called three-way handshaking. An application
program, called the client, wants to make a connection with another application
program, called the server, using TCP as the transport-layer protocol.

 The process starts with the server. The server program tells its TCP that it is ready to
accept a connection. This request is called a passive open

 The client program issues a request for an active open. A client that wishes to connect
to an open server tells its TCP to connect to a particular server

 The client sends the first segment, a SYN segment, in which only the SYN flag is set. This
segment is for synchronization of sequence numbers. This sequence number is called
the initial sequence number (ISN). This segment does not contain an acknowledgment
number

 The SYN segment is a control segment and carries no data. However, it consumes one
sequence number because it needs to be acknowledged.

 The server sends the second segment, a SYN + ACK segment with two flag bits set as:
SYN and ACK. This segment has a dual purpose. First, it is a SYN segment for
communication in the other direction. The server uses this segment to initialize a
sequence number for numbering the bytes sent from the server to the client.

 The server also acknowledges the receipt of the SYN segment from the client by setting
the ACK flag and displaying the next sequence number it expects to receive from the
client. Because the segment contains an acknowledgment, it also needs to define the
receive window size, rwnd (to be used by the client)

 The client sends the third segment. This is just an ACK segment. It acknowledges the
receipt of the second segment with the ACK flag and acknowledgment number field

Data Transfer

 After connection is established, bidirectional data transfer can take place. The client
and server can send data and acknowledgments in both directions

 In the diagram shown in figure the client sends 2,000 bytes of data in two segments.
The server then sends 2,000 bytes in one segment. The client sends one more
segment. The first three segments carry both data and acknowledgment, but the
last segment carries only an acknowledgment because there is no more data to be
sent

Downloaded from www.eduengineering.net

 The data segments sent by the client have the PSH (push) flag set so that the server
TCP knows to deliver data to the server process as soon as they are received

Connection Termination:

 Either of the two parties involved in exchanging data (client or server) can close
the connection, although it is usually initiated by the client

 Most implementations today allow two options for connection termination:
three-way handshaking and four-way handshaking with a half-close option.

Three-Way Handshaking:

 In this situation, the client TCP, after receiving a close command from the client
process, sends the first segment, a FIN segment in which the FIN flag is set.

 The server TCP, after receiving the FIN segment, informs its process of the
situation and sends the second segment, a FIN + ACK segment, to confirm the
receipt of the FIN segment

 The client TCP sends the last segment, an ACK segment, to confirm the receipt
of the FIN segment from the TCP server. This segment contains the
acknowledgment number, which is one plus the sequence number received in
the FIN segment from the server. This segment cannot carry data and consumes
no sequence numbers.

Downloaded from www.eduengineering.net

Connection Reset

 TCP at one end may deny a connection request, may abort an existing connection, or
may terminate an idle connection

State Transition Diagram

 To keep track of all the different events happening during connection establishment,
connection termination, and data transfer, TCP is specified as the finite state machine
(FSM)

 The two FSMs used by the TCP client and server combined in one diagram. The rounded-
corner rectangles represent the states. The transition from one state to another is
shown using directed lines. Each line has two strings separated by a slash. The first
string is the input, what TCP receives. The second is the output, what TCP sends.

 The dotted black lines in the figure represent the transition that a server normally goes
through; the solid black lines show the transitions that a client normally goes through.
However, in some situations, a server transitions through a solid line or a client
transitions through a dotted line. The colored lines show special situations

Downloaded from www.eduengineering.net

TCP Congestion Control:

 In flow control the size of the send window is controlled by the receiver using the value of rwnd,
which is advertised in each segment traveling in the opposite direction.

 The use of this strategy guarantees that the receive window is never overflowed with the
received bytes

 However, does not mean that the intermediate buffers, buffers in the routers, do not become
congested. A router may receive data from more than one sender. No matter how large the
buffers of a router may be, it may be overwhelmed with data, which results in dropping some
segments sent by a specific TCP sender

 TCP needs to worry about congestion in the middle because many segments lost may seriously
affect the error control.

 To control the number of segments to transmit, TCP uses another variable called a congestion
window, cwnd, whose size is controlled by the congestion situation in the network

 The cwnd variable and the rwnd variable together define the size of the send window in TCP.
The first is related to the congestion in the middle .The second is related to the congestion at
the end. The actual size of the window is the minimum of these two.

Actual window size = minimum (rwnd, cwnd)
Congestion Detection:

 The TCP sender uses the occurrence of two events as signs of congestion in the network: time-
out and receiving three duplicate ACKs.

 The first is the time-out. If a TCP sender does not receive an ACK for a segment or a group of
segments before the time-out occurs, it assumes that the corresponding segment or segments
are lost and the loss is due to congestion

 When a TCP receiver sends a duplicate ACK, it is the sign that a segment has been delayed, but
sending three duplicate ACKs is the sign of a missing segment, which can be due to congestion in
the network.

 When a receiver sends three duplicate ACKs, it means that one segment is missing, but three
segments have been received. The network is either slightly congested or has recovered from
the congestion

Congestion Policies:

 TCP’s general policy for handling congestion is based on three algorithms: slow start, congestion
avoidance, and fast recovery

Slow Start (Exponential Increase):

 The slow-start algorithm is based on the idea that the size of the congestion window (cwnd)
starts with one maximum segment size (MSS), but it increases one MSS each time an
acknowledgment arrives.

Downloaded from www.eduengineering.net

 The algorithm starts slowly, but grows exponentially. The rwnd is much larger than cwnd, so
that the sender window size always equals cwnd.

 The sender starts with cwnd = 1. This means that the sender can send only one segment. After
the first ACK arrives, the acknowledged segment is purged from the window, which means there

is now one empty segment slot in the window.

 The size of the congestion window is also increased by 1 because the arrival of the
acknowledgement is a good sign that there is no congestion in the network.

 The size of the window is now 2. After sending two segments and receiving two individual
acknowledgments for them, the size of the congestion window now becomes 4, and so on.

 The size of the congestion window in this algorithm is a function of the number of ACKs arrived
and can be determined as follows.

 If an ACK arrives, cwnd = cwnd + 1.

 A slow start cannot continue indefinitely. There must be a threshold to stop this phase. The
sender keeps track of a variable named ssthresh (slow-start threshold). When the size of the
window in bytes reaches this threshold, slow start stops and the next phase starts

DEC bit

 It is first mechanism was developed for use on the Digital Network Architecture (DNA), a
connectionless network with a connection-oriented transport protocol.

 The idea is to more evenly split the responsibility for congestion control between the routers
and the end nodes.

 Each router monitors the load it is experiencing and explicitly notifies the end nodes when
congestion is about to occur. This notification is implemented by setting a binary congestion bit
in the packets that flow through the router, hence the name DECbit.

 The destination host then copies this congestion bit into the ACK it sends back to the source.
Finally, the source adjusts its sending rate so as to avoid congestion.

 A single congestion bit is added to the packet header. A router sets this bit in a packet if its
average queue length is greater than or equal to 1 at the time the packet arrives.

 This average queue length is measured over a time interval that spans the last busy+idle cycle,
plus the current busy cycle.

 Figure shows the queue length at a router as a function of time. Essentially, the router
calculates the area under the curve and divides this value by the time interval to compute the
average queue length.

 Using a queue length of 1 as the trigger for setting the congestion bit is a trade-off between
significant queuing (and hence higher throughput) and increased idle time (and hence lower
delay). In other words, a queue length of 1 seems to optimize the power function.

Downloaded from www.eduengineering.net

Random Early Detection(RED)

 A second mechanism, called random early detection (RED), is similar to the DECbit scheme in
that each router is programmed to monitor its own queue length and, when it detects that
congestion is imminent, to notify the source to adjust its congestion window.

 The first is that rather than explicitly sending a congestion notification message to the source,
RED is most commonly implemented such that it implicitly notifies the source of congestion by
dropping one of its packets.

 The source is, therefore, effectively notified by the subsequent timeout or duplicate ACK.

 In case you haven’t already guessed, RED is designed to be used in conjunction with TCP, which
currently detects congestion by means of timeouts.

 As the “early” part of the RED acronym suggests, the gateway drops the packet earlier than it
would have to, so as to notify the source that it should decrease its congestion window sooner
than it would normally have.

 In other words, the router drops a few packets before it has exhausted its buffer space
completely, so as to cause the source to slow down, with the hope that this will mean it does
not have to drop lots of packets later on.

Quality of service (QoS):

 It is an internetworking issue that refers to a set of techniques and mechanisms that guarantee
the performance of the network to deliver predictable service to an application program

QoS Characteristics:
Reliability :

Reliability is a characteristic that a flow needs in order to deliver the packets safe and sound to
the destination. Lack of reliability means losing a packet or acknowledgment, which entails
retransmission

Delay:
Source-to-destination delay is another flow characteristic. The applications can tolerate delay in
different degrees. In this case, telephony, audio conferencing, video conferencing, and remote
logging need minimum delay, while delay in file transfer or e-mail is less important.

Jitter:
Jitter is the variation in delay for packets belonging to the same flow. For example, if four

packets depart at times 0, 1, 2, 3 and arrive at 20, 21, 22, 23, all have the same delay, 20 units of
time
Flow Control to Improve QoS:
Scheduling:

 Treating packets in the Internet based on their required level of service can mostly happen at
the routers. It is at a router that a packet may be delayed, suffer from jitters, be lost, or be
assigned the required bandwidth.

 A good scheduling technique treats the different flows in a fair and appropriate manner. Several
scheduling techniques are designed to improve the quality of service- FIFO queuing, priority
queuing, and weighted fair queuing.

Downloaded from www.eduengineering.net

FIFO Queuing

 In first-in, first-out (FIFO) queuing, packets wait in a buffer (queue) until the node (router) is
ready to process them.

 If the average arrival rate is higher than the average processing rate, the queue will fill up and
new packets will be discarded.

 A larger packet definitely may need a longer processing time. In the figure, packets 1 and 2 need
three time units of processing, but packet 3, which is smaller, needs two time units.

 This means that packets may arrive with some delays but depart with different delays. If the
packets belong to the same application, this produces jitters. If the packets belong to different
applications, this also produces jitters for each application.

 FIFO queuing is the default scheduling in the Internet.

 With FIFO queuing, all packets are treated the same in a packet-switched network.

 The bandwidth allocated for each application depends on how many packets arrive at the
router in a period of time.

Priority Queuing:

 Queuing delay in FIFO queuing often degrades quality of service in the network. A frame
carrying real-time packets may have to wait a long time behind a frame carrying a small file.

 In priority queuing, packets are first assigned to a priority class. Each priority class has its own
queue. The packets in the highest-priority queue are processed first. Packets in the lowest-
priority queue are processed last.

 A priority queue can provide better QoS than the FIFO queue because higher-priority traffic,
such as multimedia, can reach the destination with less delay

 If there is a continuous flow in a high-priority queue, the packets in the lower-priority queues
will never have a chance to be processed. This is a condition called starvation. Severe starvation
may result in dropping of some packets of lower priority.

Downloaded from www.eduengineering.net

Weighted Fair Queuing :

 A better scheduling method is weighted fair queuing.

 In this technique, the packets are still assigned to different classes and admitted to different
queues.

 The queues, however, are weighted based on the priority of the queues; higher priority means a
higher weight.

 The system processes packets in each queue in a round-robin fashion with the number of
packets selected from each queue based on the corresponding weight.

 For example, if the weights are 3, 2, and 1, three packets are processed from the first queue,
two from the second queue, and one from the third queue.

 In weighted fair queuing, each class may receive a small amount of time in each time period. In
other words, a fraction of time is devoted to serve each class of packets, but the fraction
depends on the priority of the class

Client Server Programming:
In a client-server paradigm, communication at the application layer is between two running
application programs called processes: a client and a server.
A client is a running program that initializes the communication by sending a request; a server is
another application program that waits for a request from a client.
The server handles the request received from a client, prepares a result, and sends the result back
to the client.

Downloaded from www.eduengineering.net

The server program needs to be started before start running the client program. The lifetime of
server is infinite and client is finite
Application Programming Interface
A computer manufacturer needs to build the first four layers of the suite in the operating system
and include an API.
In this way, the processes running at the application layer are able to communicate with the
operating system when sending and receiving messages through the Internet.
Several APIs have been designed for communication. Three among them are common: socket
interface, Transport Layer Interface (TLI), and STREAM.

Socket Interface:

 Socket is supposed to behave like a terminal or a file. It is an abstraction.

 It is an object that is created and used by the application program.

 The client thinks that the socket is the entity that receives the request and gives the

response; the server thinks that the socket is the one that has a request and needs the
response.

 If we create two sockets, one at each end, and define the source and destination
addresses correctly, we can use the available instructions to send and receive data

 The interaction between a client and a server is two-way communication.

 In a two-way communication, there are pair of addresses needed: local (sender) and
remote (receiver).

Downloaded from www.eduengineering.net

 The local address in one direction is the remote address in the other direction and vice
versa. Since communication in the client-server paradigm is between two sockets, we
need a pair of socket addresses for communication: a local socket address and a remote
socket address.

World Wide Web

 The idea of the Web was first proposed by Tim Berners-Lee in 1989 at CERN in Europe.
The commercial Web started in the early 1990s.

 The Web today is a repository of information in which the documents, called web pages,
are distributed all over the world and related documents are linked together.

 The idea was to use a machine that automatically retrieved another document stored in
the system when a link to it appeared in the document.

 The Web implemented this idea electronically to allow the linked document to be
retrieved when the link was clicked by the user.

 Today, the term hypertext, coined to mean linked text documents, has been changed to
hypermedia, to show that a web page can be a text document, an image, an audio file,
or a video file.
Architecture:

 The WWW today is a distributed client-server service, in which a client using a browser
can access a service using a server.

 However, the service provided is distributed over many locations called sites. Each site
holds one or more web pages.

 Each web page, however, can contain some links to other web pages in the same or
other sites.

 A web page can be simple or composite. A simple web page has no links to other web
pages; a composite web page has one or more links to other web pages. Each web page
is a file with a name and address.
Web Client (Browser):

 A variety of vendors offer commercial browsers that interpret and display a web page,
and all of them use nearly the same architecture.

 Each browser usually consists of three parts: a controller, client protocols, and
interpreters.

 The controller receives input from the keyboard or the mouse and uses the client
programs to access the document.

 After the document has been accessed, the controller uses one of the interpreters to
display the document on the screen.

Downloaded from www.eduengineering.net

 The interpreter can be HTML, Java, or JavaScript, depending on the type of document.
Some commercial browsers include Internet Explorer, Netscape Navigator, and Firefox.
Web Server

 The web page is stored at the server. Each time a request arrives, the corresponding
document is sent to the client.

 To improve efficiency, servers normally store requested files in a cache in memory.

 A server can also become more efficient through multithreading or multiprocessing.

 In this case, a server can answer more than one request at a time. Some popular web
servers include Apache and Microsoft Internet Information Server.

Uniform Resource Locator (URL)

 A web page, as a file, needs to have a unique identifier to distinguish it from other web
pages. To define a web page, we need three identifiers: host, port, and path.

 However, before defining the web page, it needs to tell the browser what clientserver
application or protocol required for usage
 Protocol. The first identifier is the abbreviation for the client-server program that we
need in order to access the web page.
Host. The host identifier can be the IP address of the server or the unique name given to
the server.
Port. The port, a 16-bit integer, is normally predefined for the client-server application.
Path. The path identifies the location and the name of the file in the underlying
operating system.
To combine these four pieces together, the uniform resource locator (URL) has been
designed

Web Documents

 The documents in the WWW can be grouped into three broad categories: static,
dynamic, and active.

Static Documents

 Static documents are fixed-content documents that are created and stored in a server.

 The client can get a copy of the document only.

 When a client accesses the document, a copy of the document is sent. The user can then
use a browser to see the document.

 Static documents are prepared using one of several languages: HyperText Markup
Language (HTML), Extensible Markup Language (XML), Extensible Style Language (XSL),
and Extensible Hypertext Markup Language (XHTML).

 Dynamic Documents

 A dynamic document is created by a web server whenever a browser requests the
document. When a request arrives, the web server runs an application program or a
script that creates the dynamic document.

 The server returns the result of the program or script as a response to the browser that
requested the document.

 Because a fresh document is created for each request, the contents of a dynamic
document may vary from one request to another.

 A very simple example of a dynamic document is the retrieval of the time and date from
a server.

Downloaded from www.eduengineering.net

 The Common Gateway Interface (CGI) was used to retrieve a dynamic document in the
past, some other options included are Java Server Pages (JSP), which uses the Java
language for scripting, or Active Server Pages (ASP), a Microsoft product that uses Visual
Basic language for scripting, or ColdFusion, which embeds queries in a Structured Query
Language (SQL) database in the HTML document.

Active Documents:

 For many applications, we need a program or a script to be run at the client site. These
are called active documents.

 When a browser requests an active document, the server sends a copy of the document
or a script. The document is then run at the client site. One way to create an active
document is to use Java applets, a program written in Java on the server.

Hyper Text Transfer Protocol (HTTP)

 The Hyper Text Transfer Protocol (HTTP) is used to define how the client-server
programs can be written to retrieve web pages from the Web.

 An HTTP client sends a request; an HTTP server returns a response.

 The server uses the port number 80; the client uses a temporary port number.

 HTTP uses the services of TCP, a connection-oriented and reliable protocol.

 The client and server do not needs to worry about errors in messages exchanged or loss
of any message, because the TCP is reliable and will take care of this matter

The hypertext concept embedded in web page documents may require several requests and
responses.

 If the web pages, objects to be retrieved, are located on different servers, we do not
have any other choice than to create a new TCP connection for retrieving each object.

 However, if some of the objects are located on the same server, we have two choices: to
retrieve each object using a new TCP connection or to make a TCP connection and
retrieve them all. The first method is referred to as a nonpersistent connection, the
second as a persistent connection.
Non persistent Connections:
In a nonpersistent connection, one TCP connection is made for each request/response.
 1. The client opens a TCP connection and sends a request.
2. The server sends the response and closes the connection.
3. The client reads the data until it encounters an end-of-file marker; it then closes the
 connection.

 If a file contains links to N different pictures in different files the connection
must be opened and closed N + 1 times.

 The nonpersistent strategy imposes high overhead on the server because the
server needs N + 1 different buffers each time a connection is opened.

Persistent Connections

 In a persistent connection, the server leaves the connection open for more
requests after sending a response.

 The server can close the connection at the request of a client or if a time-out
has been reached.

 The sender usually sends the length of the data with each response. However,
there are some occasions when the sender does not know the length of the
data.

Downloaded from www.eduengineering.net

 In these cases, the server informs the client that the length is not known and
closes the connection after sending the data so the client knows that the end of
the data has been reached.

 Time and resources are saved using persistent connections.

 Only one set of buffers and variables needs to be set for the connection at each
site. The round trip time for connection establishment and connection
termination is saved.

Message Formats

 The HTTP protocol defines the format of the request and response messages.

 Each message is made of four sections. The first section in the request message is called
the request line; the first section in the response message is called the status line.

 The other three sections have the same names in the request and response messages.

ELECTRONIC MAIL

 Electronic mail (or e-mail) allows users to exchange messages.

 In an application such as HTTP or FTP, the server program is running all the time, waiting
for a request from a client.

 When the request arrives, the server provides the service. There is a request and there
is a response.

 First, e-mail is considered a one-way transaction. When Alice sends an email to Bob, she
may expect a response, but this is not a mandate.

 Bob may or may not respond. If he does respond, it is another one-way transaction.
Second, it is neither feasible nor logical for Bob to run a server program and wait until
someone sends an e-mail to him. Bob may turn off his computer when he is not using it.

Architecture:

 The sender and the receiver of the e-mail, Alice and Bob respectively, are connected
via a LAN or a WAN to two mail servers.

 The administrator has created one mailbox for each user where the received
messages are stored.

 A mailbox is part of a server hard drive, a special file with permission restrictions.
Only the owner of the mailbox has access to it. The administrator has also created a
queue (spool) to store messages waiting to be sent.

 A simple e-mail from Alice to Bob takes nine different steps. Alice and Bob use three
different agents: a user agent (UA), a message transfer agent (MTA), and a message
access agent (MAA).

Downloaded from www.eduengineering.net

 When Alice needs to send a message to Bob, she runs a UA program to prepare
the message and send it to her mail server.

 The mail server at her site uses a queue (spool) to store messages waiting to be
sent. The message, however, needs to be sent through the Internet from Alice’s
site to Bob’s site using an MTA.

 Here two message transfer agents are needed: one client and one server. Like
most client-server programs on the Internet, the server needs to run all the time
because it does not know when a client will ask for a connection.

 The client, on the other hand, can be triggered by the system when there is a
message in the queue to be sent.

 The user agent at the Bob site allows Bob to read the received message. Bob
later uses an MAA client to retrieve the message from an MAA server running
on the second server

 Bob cannot bypass the mail server and use the MTA server directly. To use the
MTA server directly, Bob would need to run the MTA server all the time because
he does not know when a message will arrive

 Second, note that Bob needs another pair of client-server programs: message
access programs. This is because an MTA client-server program is a push
program: the client pushes the message to the server. Bob needs a pull program

User Agent

 The first component of an electronic mail system is the user agent (UA). It provides
service to the user to make the process of sending and receiving a message easier.

 A user agent is a software package (program) that composes, reads, replies to, and
forwards messages. It also handles local mailboxes on the user computers. There
are two types of user agents: command-driven and GUI-based. Commanddriven
user agents belong to the early days of electronic mail.

 They are still present as the underlying user agents. A command-driven user agent
normally accepts a onecharacter command from the keyboard to perform its task

 Modern user agents are GUI-based. They contain graphical user interface (GUI)
components that allow the user to interact with the software by using both the
keyboard and the mouse

Sending Mail

 To send mail, the user, through the UA, creates mail that looks very similar to postal
mail. It has an envelope and a message. The envelope usually contains the sender
address, the receiver address, and other information.

Downloaded from www.eduengineering.net

 The message contains the header and the body. The header of the message defines
the sender, the receiver, the subject of the message, and some other information.

 The body of the message contains the actual information to be read by the recipient
Receiving Mail

 The user agent is triggered by the user .

 If a user has mail, the UA informs the user with a notice. If the user is ready to read
the mail, a list is displayed in which each line contains a summary of the information
about a particular message in the mailbox.

 The summary usually includes the sender mail address, the subject, and the time the
mail was sent or received.

 The user can select any of the messages and display its contents on the screen.
Addresses

 To deliver mail, a mail handling system must use an addressing system with unique
addresses.

 In the Internet, the address consists of two parts: a local part and a domain name,
separated by an @ sign

 The local part defines the name of a special file, called the user mailbox, where all

the mail received for a user is stored for retrieval by the message access agent.

 The second part of the address is the domain name. An organization usually selects
one or more hosts to receive and send e-mail; they are sometimes called mail
servers or exchangers.

 The domain name assigned to each mail exchanger either comes from the DNS
database or is a logical name

Downloaded from www.eduengineering.net

CONNECT WITH US

-

CONNECT WITH US

TELEGRAM: @eduengineering

INSTAGRAM: @eduengineering

 Regular Updates for all Semesters
 All Department Notes AVAILABLE
 Handwritten Notes AVAILABLE
 Past Year Question Papers AVAILABLE
 Subject wise Question Banks AVAILABLE
 Important Questions for Semesters AVAILABLE
 Various Author Books AVAILABLE

WEBSITE: www.eduengineering.net

